澳门六合彩官方

孙华清


   姓名:孙华清  
  
职称:教授,博士生导师

   联系电话:13173313358

   所在部门:澳门六合彩官方 、数学与交叉科学研究中心

  E-mail[email protected]

  1. 研究领域

微分算子谱理论、差分方程、动力系统



  1. 讲授课程

本科课程:数学分析、常微分方程、实变函数、复变函数、泛函分析

概率论与数理统计、线性代数、数学建模、数学建模基础等

研究生课程:现代泛函分析、常微分方程补充教程、微分方程边值问题、

非线性分析、线性算子谱理论。

三、教育及工作经历

2023.1至今,东北大学,教授,博士生导师;

2016-2022,山东大学(威海),教授,博士生导师;

2013-2016,山东大学金融学院,博士后;

2012.12-2013.03,访问美国Northern Illinois University

2012.01,南开大学,陈省身研究所访问;

2011-2016,山东大学威海数学与统计学院,副教授;

2007-2010,山东大学威海数学与统计学院,讲师;

2004-2007,山东大学数学学院,博士;

2001-2004,山东大学数学学院,硕士;

  1. 获得荣誉

8.2022年,获第十三届山东省大学生数学竞赛“优秀指导教师奖”;

7.2019年,被评为“山东大学(威海)教学能手”;

6.2018年,被评为山东大学威海暑期社会实践活动优秀指导教师;

5.2018年,被评为山东大学威海优秀本科生指导教师;

4.2016年,指导本科生毕业论文荣获山东省省级优秀论文;

3.2016年,荣获山东大学威海优秀教师;

2.指导全国大学生数学建模竞赛,获国家一等奖2项,国家二等奖2项;省级一等奖14项,省级二等奖14项;

1.指导美国大学生数学建模竞赛,获一等奖2项,二等奖4项;

  1. 主持科研项目

9.2020-2023,奇异Hamilton系统谱及其相关研究,国家自然科学基金面上项目

8.2015-2018,奇异J-对称哈密顿系统谱问题研究,国家自然科学基金面上项目

7.2012-2014,非对称线性差分系统谱理论研究,国家自然科学基金青年项目

6.2019-2022,奇异线性Hamilton系统谱的研究及其应用,山东省自然科学基金面上项目

5.2011-2013,非自伴线性哈密顿系统谱性质的研究,山东省自然科学基金青年项目

4.2014-2016,奇异J-对称微分算子的谱问题,中国博士后基金面上项目

3.2013-2015,奇异哈密顿算子谱分布研究,山东省博士后创新基金

2.2015-2019,低松弛预应力钢绞线松弛试验数据线性回归模型,威海市科技局

1.2011-2013,奇异微分算子谱定性分析的相关研究,山东大学自主创新项目

六、参与科研项目

6.2018-2021,非局部Sturm-Liouville 谱问题及相应极值问题的研究,国家自然科学基金面上项目(第二位)

5.2017-2019,关于分数阶微分方程谱问题的研究,国家自然科学基金青年项目(第二位)

4.2021-2022,二阶微分算子在有限谱信息下最优恢复问题的研究,山东省自然科学基金面上项目(第三位)

3.2016-2019,Strum-Liouville谱理论中势函数与权函数极值问题的研究,山东省自然科学基金面上项目(第三位)

2.2015-2017,可压流体力学方程组弱()解的适定性及其大时间行为,山东省自然科学基金面上项目(第二位)

1.2009-2011,哈密顿微分算子的非相对紧扰动及其应用,山东省自然科学基金面上项目(第三位)

  1. 教学研究 

2.2022-2024 数学分析课堂教学创新,校级

1.2019-2024 数学分析,校级重点

八、发表论文及著作

[31] Zhu Li, Sun Huaqing, Essential numerical ranges of linear relations and singular discrete linear Hamiltonian systems, Chin. Ann. Math. Ser. B. Accepted.

[30] Zhu Li, Sun Huaqing, Xie Bing, On classification of singular matrix difference equations of mixed order, Proc. Roy. Soc. Edinburgh A. 2023, DOI: 10.1017/ prm. 2023.56.

[29] Zhang Shuo, Sun Huaqing, Yang Chen, Friedrichs extensions of a class of disc- rete Hamiltonian systems with one singular endpoint, Math. Nachr. 296 (2023), 4169-4191.

[28] Zhu Li, Sun Huaqing, On essential numerical ranges and essential spectra of Hamiltonian systems with one singular endpoint, Linear Algebra Appl. 645 (2022), 9-29.

[27] Yang Chen, Sun Huaqing, Essential spectra of singular Hamiltonian differential operators of arbitrary order under a class of perturbations, Stud. Appl. Math. 147 (2021), 209-229.

[26] Yang Chen, Sun Huaqing, Friedrichs extensions of a class of singular Hamiltonian systems, J. Differential Equations. 293 (2021), 359-391.

[25] Sun Huaqing, Xie Bing, Spectra of a class of non-symmetric operators in Hilbert spaces with applications to singular differential operators, Proc. Roy. Soc. Edinburgh A.150 (2020), 1769-1790.

[24] Sun Huaqing, Qi Jiangang, Stability of essential spectra of singular Sturm-Liouville differential operators under perturbations small at infinity, Math. Methods Appl. Sci. 41 (2018) 2031-2038.

[23] Xie Bing, Sun Huaqing, Guo Xinwei, Non-real eigenvalues of symmetric Sturm-Liouville problems with indefinite weight functions, Electron J Qual Theo. 2 (2017) 1-14.

[22] Qi Jiang, Sun Huaqing, Relatively bounded and relatively compact perturbations for limit circle Hamiltonian systems, Integr. Equ. Oper. Theory 86 (2016), 359–375.

[21] Sun Huaqing, Kong Qingkai, Shi Yuming, Essential spectrum of singular disc- rete linear Hamiltonian systems, Math. Nachr. 289, (2016), No. 2–3, 343–359.

[20] Sun Huaqing, Shi Yuming, On essential spectra of singular linear Hamiltonian systems, Linear Algebra Appl. 469 (2015), 204-229.

[19] Sun Huaqing, Shi Yuming, Jian Wenwen, J-self-adjoint extensions of a class of Hamiltonian differential systems, Linear Algebra Appl. 462, (2014), 204-232.

[18] Jian Wenwen, Sun Huaqing, On bounds of eigenvalues of complex Sturm-Liouville boundary value problems, Abstr. Appl. Anal. 2014, Art. ID 362340, 4 pp.

[17] Sun Huaqing, Shi Yuming, Spectral properties of singular discrete linear Hamiltonian systems, J. Difference Equ. Appl. 20 (2014), no. 3, 379–405.

[16] Sun Huaqing, Simplicity and spectrum of singular Hamiltonian systems of arbitrary order, Abstr. Appl. Anal. 2013, Art. ID 202851, 6 pp.

[15] Ren Guojing, Sun Huaqing, J-self-adjoint extensions for a class of discrete linear Hamiltonian systems, Abstr. Appl. Anal. 2013, Art. ID 904976, 19 pp.

[14] Sun Huaqing, Ren Guojing, J-self-adjoint extensions for second-order linear difference equations with complex coefficients, Adv. Difference Equ. 2013, 2013:3, 26 pp.

[13] Sun Huaqing, Qi Jiangang, Criteria of the three cases for non-self-adjoint singular Sturm-Liouville difference equations, J. Difference Equ. Appl. 18 (2012), no. 12, 2069–2087.

[12] Sun Huaqing, Qi Jiangang, The theory for J-Hermitian subspaces in a product space, ISRN Math. Anal. 2012, Art. ID 676835, 16 pp.

[11] Qi Jiangang, Zheng Zhaowen, Sun Huaqing, Classification of Sturm-Liouville differential equations with complex coefficients and operator realizations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2131, 1835–1850.

[10] Sun Huaqing, Qi Jiangang, Jing Haibin, Classification of non-self-adjoint singular Sturm-Liouville difference equations, Appl. Math. Comput. 217 (2011), no. 20, 8020–8030.

[9] Sun Huaqing, Shi Yuming, Self-adjoint extensions for singular linear Hamiltonian systems, Math. Nachr. 284 (2011), no. 5-6, 797–814.

[8] Shi Yuming, Sun Huaqing, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Algebra Appl. 434 (2011), no. 4, 903–930.

[7] Sun Huaqing, Qi Jiangang, On classification of second-order differential equations with complex coefficients, J. Math. Anal. Appl. 372 (2010), no. 2, 585–597.

[6] Sun Huaqing, Shi Yuming, Self-adjoint extensions for linear Hamiltonian systems with two singular endpoints, J. Funct. Anal. 259 (2010), no. 8, 2003–2027.

[5] Sun Huaqing, Limit point criteria for singular linear discrete Hamiltonian systems, (Chinese) J. Shandong Univ. Nat. Sci. 45 (2010), no. 3, 76–79.

[4] Sun Huaqing, On the limit-point case of singular linear Hamiltonian systems, Appl. Anal. 89 (2010), no. 5, 663–675.

[3] Sun Huaqing, Shi Yuming, Strong limit point criteria for a class of singular discrete linear Hamiltonian systems, J. Math. Anal. Appl. 336 (2007), no. 1, 224–242.

[2] Sun Huaqing, Shi Yuming, Limit-point and limit-circle criteria for singular second-order linear difference equations with complex coefficients, Comput. Math. Appl. 52 (2006), no. 3-4, 539–554.

[1] Sun Huaqing, Shi Yuming, Eigenvalues of second-order difference equations with coupled boundary conditions, Linear Algebra Appl. 414 (2006), no. 1, 361–372.


九、学术兼职

辽宁省数学会数学交叉与应用委员会主任;

曾任山东大学数学与应用数学系主任以及院长助理;

美国数学会《Mathematics Review》评论员;

多个SCI杂志审稿人。